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1. Introduction

1.1 Background

Because of the environment in which they operate, the

seakeeping characteristics of a ship are of paramount impor-

tance when assessing its overall performance. In the past

this aspect of a ship's performance had to be judged by the

results of model tests conducted at a point in time well into

the preliminary design phase. While these tests provide

results of good quality, they were not obtained until the

pending designwas quite firmly established. In fact, the

results obtained by model tests. had the characteristic of

being just that, results, rather than an important input into

the design cycle. The obvious desire then would be to have

a tool capable of providing accurate predictions of seakeeping

performance based on the data available in the conceptual

design phase. These predictions could then be used to in-

fluence the selection of hull form coefficients, etc. prior

to the time when the hull form is actually being generated.

In 1975 Professors T. Loukakis and C. Chryssostomidis

published the "Seakeeping Standard Series for Cruiser-Stern

Ships". 11 This paper corrolates the seakeeping behavior,

as predicted by computer model, of the Extended Series 60

9



hull forms and sets forth a method by which the performance

of this type of ship may be predicted based on five para-

meters: Froude number, F; ratio of significant wave height

to ship length, S; beam/draft ratio, B/T; length/beam ratio,

L/B; and block coefficient, CB. With this procedure a

designer can predict the relative merits of various candidate

designs at a very early stage. This represents a significant

capability.

As a result of the work represented in reference [1]

there is considerable interest in generating a similar sea-

keeping series for contemporary cruiser/destroyer type hull

forms. In order to do this in the fashion of reference [11,

a representative sample of the ship type must be analyzed by

computer model and then the results corrolated. It was

this need for sample hull forms that provided the motivation

for this thesis.

1.2 Thesis Content

There are two aspects of hull form generation

addressed in this thesis: first, hull form modification and

second, mathematical lines representation and fairing The

technique of hull form modification developed in chapter two

is based on the work of H. Lackenby reported in reference [21.

The essence of this method is that the sectional area curve

10
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of an existing ship is redrawn in a systematic fashion to

produce a curve with the desired values of prismatic co-

efficient, C p, and longitudinal center of buoyancy, LCB. The

sections are then shifted longitudinally to produce a modified

form with these characteristics. In applying this technique

to destroyer type ships there were several anomalies encoun-

tered which required that the method of Lackenby be further

modified. These modifications, with the pertinent background

are contained in chapter two.

The other aspect of lines generation which is addressed

in chapters three and four is mathematical lines representation

and fairing. Although the fairness of a hull form is not

critical to the seakeeping analysis it is an unavoidable

subject when considering computer aided ship design. In

these chapters the use of parametric cubic splines and least

squares curve fitting are addressed. While the parametric

splines are shown to provide the capability of representing

virtually any type of line, the least squares fairing technique

is limited to use with curves representable by single valued

functions. The algorithms are, however, capable of fairing

lines with infinite slopes at the end points.

It is anticipated that the tools developed in this

thesis could be readily fused into a single computer program

with the capability of modifying an existing ship form to

11



obtain a faired design with the desired coefficients of form.

When this is developed it will be possible to generate

rapidly any number of designs for subsequent performance

analysis. The implications of this are discussed in chapter

six.

12



2. Method of Hull Form Modification

2.1 Background

During the design of all but the most trivial engin-

eering systems, it is incumbent upon the engineer that he

or she formulate a model of that system. Additionally,

the designer must continually refine the model with each

successive iterative cycle so that the results are of

sufficient detail to be meaningful [ 3]. One such model

used during ship design is a geometric description of the

ship's hull form. The most traditional manner of providing

this information is by way of the lines drawing.

The ship's lines drawing, more frequently referred

to as the ship's lines, is a set of three orthogonal views

of the ship's hull depicting the lines of intersection of

various planes with the hull form. When viewed in conjunc-

tion with one another, they provide the capability to

spatially locate any point on the moulded surface of the

ship. Figure 2.1, taken from reference [4 1, is an example

of a lines drawing for a "Mariner"-class, steel hull cargo

vessel.

While the lines drawing, prepared manually by the naval

architect and draftsman, has been the older and more tradi-

tional means of depicting the geometric properties of a ship,

13
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the advent of the high speed computer has provided great

impetus for defining the ship's form in a mathematical

format [ 5]. It is interesting however, that a very

successful attempt was made at representing ship's lines

mathematically by Admiral David Taylor in the early 1900's

[6 3. This will be expanded upon a bit later.

When first confronted with the job of creating the

lines of a new ship, the naval architect seeks a means of

quantifying the expected form of the vessel so that he may

strive to create an "optimum" design. These optimizing

criteria generally take the form of requirements and restric-

tions placed on the various coefficients of form, i.e.,

C , Cw , LCB, LCF, etc. However, there might also be

requirements placed on certain specific regions of the

ship. An example of this could be the shape of the midships

section for a cargo vessel or the stern configuration

dictated by propeller and rudder selections. Nonetheless,

when the naval architect completes his candidate design,

the important product will be a faired set of ship's lines

meeting all the optimizing criteria previously established.

The above procedure is clearly long and involved. For

this reason much effort has been expended to develop hull

form modification techniques. The objective of these pro-

cedures is to utilize an existing, successful hull design,

or parent form, as a basis and then to alter this form in a

15
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systematic fashion. This modified form should have the

desired characteristics, and, hopefully, require little

additional refairing. It is this fairing procedure, des-

cribed in chapter 4, which requires a large proportion of

the designer's effort. The remainder of this chapter

addresses the modification techniques themselves.

One of the oldest and most widely used methods of hull

form modification is illustrated in Figure 2.2. In essence,

the sectional area curve of an existing ship is altered by

some arbitrary or systematic method to produce a curve which

satisfies some criteria of the designer, usually prismatic

or block coefficient and longitudinal center of buoyancy.

The offsets for the new design are then obtained by taking

the section in the parent whose ordinate in the sectional

area curve matches the ordinate of the derived curve. This

is represented by the movement of section A at position Xa

in the parent to section A' at position Xat in the derived

hull form. Hence, it is merely a longitudinal repositioning

of the existing sections. This method works reasonably well

as long as the shifts are of "moderate" amount and the

designer is prepared to accept the resulting profile and

waterlines without alteration.

16



Sectional Area Curve

1 loe A

Figure 2.2

The above method lends itself quite well to design

without the aid of computers or other automatic computational

devices. However, in recent years there has been much work

done in the area of hull form modification with the use of

high speed digital computers. In virtually all cases where

computers are used, an effort is made to represent the ship's

contours or surface regions (5 1 in a mathematical format.

It is for this reason that the "Taylor Standard Series" is of

interest. It was Admiral David Taylor who, in the early

1900's, generated one of the first successful hull series

based on representing the sectional area curve and design

waterlines by fifth degree polynomials [e 1.

Another procedure of hull form modification utilizes

specific transformation functions to alter various regions

or characteristics of the hull [7]. This form of

17



modification provides the user with much greater control over

the specific ship form than the method of shifting sections

longitudinally as previously described. An interesting

description of this type of procedure may be found in

reference [ 7 1.

It is, however, the method of longitudinally shifting

sections which was selected for development in this thesis.

The reasons for its selection are twofold. First, preliminary

work with destroyer-type ships conducted at M.I.T. during the

summer of 1977, indicated that the results of the modification

were quite realistic and not plagued by gross unfairness.

Secondly, the method was tractable and readily adopted to the

peculiarities of destroyers. Those peculiarities being

principly the fact that this type of ship has no parallel

middle body and also that the section of maximum area, in

most cases lies at a location other than midship.

The specific method of modification used is that of

Lackenby [ 21 as subsequently modified by Moor C 8], and then

again by this author. Briefly, the developments presented in

reference [2 1 are highly general, permitting the designer to

vary the value of prismatic coefficient, Cp, and the longi-

tudinal center of buoyancy, LCB, of a very wide variety of

ships. Included was the capability of altering, or retaining

unchanged, the parallel middle bodies of ships so configured.

However, one serious drawback was that the method left no

18



control over the design waterline, and while this line might

turn out fair, the longitudinal center of floatation, LCF,

merely ended up where it did. It was to this problem that

Moor [8 was concerned. By addressing himself to both the

sectional area curve and the design waterline in the manner

of Lackenby, and then coupling the two procedures, he was

able to obtain a derived form having the desired values of

Cp, Cw , LCB and LCF.

At this point only one minor problem existed with the

method as it stood. For ships with keelrise fore or aft it

was possible to obtain unwanted oscillations in the ship's

centerline profile. To eliminate these oscillations, this

author extended the logic of Moor to include the ship's

profile. In so doing, the designer may be assured of a

derived form having not only the four desired characteristics

and coefficients previously mentioned, but also the desired

profile. The only restricting requirement, other than the

fact that the changes in Cp and Cw be "moderate", is that

for the method to be mathematically rigorous the section

of maximum beam, sectional area and local draft must be

coincident. If this isn't the case a small (a1l) unpre-

dictable error, based on the parent hull design and the

desired changes is introduced.

19



All of these relationships are developed in full in

the following section. The only other alteration to the

methods of Lackenby and Moor was that the procedure had to

be capable of accommodating destroyer-type ships whose

maximum sections fill other than at midship. This change

is also included in the derivations that follow.

20



2.2 Development

2.2.1 The *One Minus Prismatic" Variation

As a means of introducing the method of longitudinal

repositioning of sections, the traditional "one minus

prismatic* is first developed. This procedure enables the

designer to modify the fineness of a parent form by expanding

(creating in ships without), or reducing the region of

parallel middle body. It is convenient for this, and the

following derivations to refer to Figure 2.3 and the

following definitions. It should also be noted that the

sectional area curve is normalized with respect to both the

value of maximum area and length of the half body.

... IIl_ IC

Sp -,,,

V NC

Fi ure 2.3-S.A. Curve
(with para Iel middlebody)
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For the parent design:

S= the prismatic coefficient of the half body.

S- the fractional distance from midships of

the centroids of the half body.

p - the fractional parallel middle of the half body.

x = the fractional distance of any transverse

section from midships.

y = normalized area of any transverse section at

longitudinal position x.

For the derived form:

6 = the required change in prismatic coefficient

of the half body.

8p = the resulting change in parallel middle body.

8x = the necessary longitudinal shift of the

section at x required to generate the required

change in prismatic coefficient.
h - the fractional distance from midships of the

centroid of the added "sliver" of area

represented by 6*.

In Figure 2.3 it should be recognized that AB'C is the

curve of the derived form and curve ABC is that of the

parent. In accordance with the method of the "one minus

prismatic" the new location of the transverse sections is

defined by the following equations.

22



1- (x+8x) ,,1-0(+60)
1-x1-

+6x
r-x

The area BCD is seen to be 1 - * and the above modification
simply reduces it by the factor

The new area B'CD is therefore 1 - (#+6f), demonstrating

that the method generates the desired prismatic coefficient

of + 64.

There is however a concomitant change in a parallel

middle body found by solving for x at x - p, i.e.,

Sp - (l-p)

(2.2)

Therefore the resulting change in prismatic coefficient is

obtained by altering the length of parallel middle body and

then proportionally expanding or contracting the entrance

and run. Because of this procedure the method has the

following disadvantages:

23



1. There is no control over the length of the

parallel middle body, i.e., * and p, cannot
be varied independently.

2. The procedure cannot be applied to reduce the

fullness of a ship having no parallel middle

body.

3. Conversely, a ship cannot be increased in

fullness without introducing parallel middle

body.

4. The prismatic coefficient of the entrance or

run cannot be altered...

5. The region where fullness is added cannot be

controlled. That is, the maximum changes in

fullness take place at the shoulders of the

curve, i.e., point B.

It is because of these numerous, severe restrictions that

Lackenby sought to develop a more general technique of

modification.

2.2.2 Varying the Fullness of an Entrance or Run not

Associated with Parallel Middle Body.

In reference E 2 1, Lackenby concerned himself with

providing a means by which to modify both Cp, LCB and the

length of parallel middle body in a controllable manner.

24



While many of these relationships are of importance, only

those which apply more specifically to destroyer-type hull

forms will be pursued in any detail. However, for the

readers'convenience, the most generalized case of Lackenby's

formulas is included as equations (2.10) through (2.13) in the

last part of this section. For the in depth derivations the

reader is referred to the original paper. Nevertheless, the

following derivation is the foundation upon which all the

subsequent relationships are based.

In referring to figure 2.4 the various quantities have

a meaning identical to those of the previous section. The

only additional term requiring definition is k, defined

mathematically as follows:

k =- f 1 x3dy3 0

The only other difference between figures 2.3 and 2.4 is that

figure 2.4 represents a hull form not having parallel middle

body, i.e., p = 0, and as a consequence the length of the

entrance and run equals that of the half length of the ship.

In referring to figure 2.4, it is recognized that in

order to preserve the form of the parent at both the end of

the ship, (x - 1) and the middle of the ship, (x - 0) an

equation for 6x of the following form would suffice:

25



ax- cx(1 - x)

where c is an as yet to be determined constant. It may be

seen in Appendix A that the relationship for 6x is:

ax = x (1 - x) (2.3)O(l-2i')

1 .D

BB

Figure 2.4-S.A.Curve C

Clearly, the equation for 8x is of the form of a second degree

polynomial (parabola) whose values are 0 at x - 0 and x - 1,

as desired. This relationship also shows that the amount by

which any section in the parent is shifted is a function solely

of the unchanged longitudinal position x and some as yet unknown

value 6.
26
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At this point we must turn our attention and consider

both the entrance and run concurrently if we are to lend some

significance to the quantity 6f. If we desire to specify both

C and LCB, we are in essence placing a requirement on the

area under the sectional area curve and its moment about some

axis (say x - 0). Since equation (2.3) applies independently

to the entrance and run, it should be possible to select the

6f's of these respective regions such that when taken together,

the ship has the values of Cp and LCB desired.

At this point we- introduce the following quantities:

S= the distance of the parent ship's LCB

from midships, normalized by the half

length, (positive forward).

61- the required shift in LCB to obtain that

required for the daughter hull form

(positive forward).

Prime (') - denotes derived forms.

Subscripts - e - entrance or forward half-body.

r - run or after half-body.

t - a property describing the

entire ship.
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If equations (2.4) and (2.5) are rearranged, the expressions

for 8#e and 6#r may be obtained.

6#. e(h2 {6t(hr+i) + 87(# t + 8#t (2.6)

= 2 {6ft(h -) 67(ft + a# (2.7)r =(h e+h r) (e-Z)-

At this point the only variables which were not previously

defined are he and hr. The exact expression for these

variables is, with the appropriate subscript:

h- 27-3k 2 +(_ 3k 2 + 2r 3 ) (2.8)
1-2i (1 - 2 i)

While equation (2.8) contains 6*, the very thing for which it

is being used to calculate, it has been stated [2 1 that the

leading term along provides a very good approximation to h

for "moderate" values of 6*, i.e.,

2x -3k2
h - (2.9)

1 - 21

Should it be desired to calculate 64 using equation (2.8), the

solution will prove to be a quadratic which, while unwieldy,

is certainly not unsolvable. The derivation of h may be found

in Appendix A with the value of r defined as follows:

29



r x4 dy
inl0

While the above equations with the derivations in the

Appendix illustrate the underlying theory, the following

expressions represent the most general form of Lackenby's

work.

= B* Br 2(6*t(B Ii*)+8F(t+6ft)1+Ce6pe~6

(2.10)

6r M Be + Br (26 [t (B -)- 67(t-6 t) ]-CeSPe-Cr6Pr)

(2.11)

In the following expressions the items refer to the entrance

or run as appropriate:

6x - (1 - X) 01+ (x-P) [6*-6p (2.12)

The practical limits on 60 and 85* are:

t~(1* 1 - p- (2.13)
1-p

A, B and C are calculated as follows:

A - #*(l-2i) - P (1-0) (2.14)

B - 1(i- 3k 2  p p(1-2F) (2.15)
A

c- 1 {(1#) # *(1-2i) (2.16)
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It should be recognized that in the above equations the

necessary section shift, 6x, is a function of the new values

of C and LCB, and the properties of the original parent hull

form.

2.2.3 Modification of Lackenby's Method to Accommodate Hull

Forms with Maximum Sections not at Midships.

It should be realized that in all of the preceding

developments it was assumed that the section of maximum area

fell at midships. While this is certainly the case for a

large class of vessels, it is virtually never true for contem-

porary cruisers and destroyers. It is for this reason that a

new set of equations was sought while still adhering to the

basic philosophy of longitudinally shifting sections.

A, notd=,l

Figure 2.6 - SA. Curve
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Referring to figure 2.6, the definition of terms is,

once again, consistant with the preceding section. There are,

however, two very important changes. First, where i and 8i

were originally normalized by the ships half length, they are

now normalized by twice that length or the length between

perpendiculars, L. Second, x, the local longitudinal position

of any section is normalized by the appropriate length of

entrance or run Le or Lr respectively. Also all values of

x and I take as their origin the station of maximum sectional

area.

The basic relationship for 6x is still of the form

dx - cx(l-x) or dx =
(1-2x) x(1-x), the same as equation

(2.3) previously. However, equations (2.4) and (2.5) now

become:

t L (e + e) + Lr(fr + ) }  (2.17)

2 2 h

11="+6"= L L edee-Li rrrr
L e ( x(2.18)

These two equations are solved simultaneously for 6fe and

6*r in Appendix B, the results of which are listed below:

e L2h +LeLh {L2rxr- L *e e e +' L2*t -Lrhr (Le.e+Lrfr-L4 r)}
L;h a L r r (2.19)

6# r Z 1 L2* # - L 2  r  -'L 2 # *-Lehe(Le +Lr'r - L*P}
Lhr+LrLeh e r rte *g r t

(2.20)

32



It was these two equations along with equation (2.3) which

proved to give very satisfactory results for several sample

calculations.

2.2.4 A Method by which Constraints may be Placed on the

Design Waterline

In the preceding development the designer had no

control over the shape of the design waterline. Because the

longitudinal center of flotation LCF, was felt to be an

important parameter in determining a ship's performance in

a seaway, Moor [ 81 further developed the method of Lackenby

to include control over the design waterline. It was with

his revised method that Moor and his colleagues developed

four distinctly different models with only their midships

section identical. They were thus able to cut these four

models in half to generate sixteen uniquely different hull

forms.

An interesting side light of this experiment was that

the parent form used was that of a fast twin-screw currently

in service whose maximum section was abaft midships. They,

therefore, had to first swing the original area curve to

place the maximum section at midships and then proceed with

the new method of modification. Although having the maximum

section at amidship may have proven to be more tractable for
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the creation of the models, it was not necessary for the

application of Lackenby's method. This fact was demonstrated

in the previous section.

The essence of Moor's method is that the sectional

area curve and the design waterline are both altered in the

sense of Lackenby to produce the desired values of Cp, LCB,

Cw and LCF. At this point a new factor is introduced; the

ratio between the sectional area ordinate and the design

waterline ordinate is calculated for both the parent and

derived hull forms. These ratios are then plotted as a

function of ship length and it is from this curve that the

longitudinal shift of sections is determined. Figures 2.7

and 2.8 illustrate the sectional area and design waterline

curves and the area/waterline ratio curve respectively.

Referring to figure 2.8, to obtain the offsets for a

particular section Rd in the derived form, section Rp in the

parent is used as a basis. The reason for selecting station

R in the parent is that it is the closest section to Rd with
p d

the same value of area/waterline ratio. The offsets of

section R are then multiplied by the ratio of the beam
p

coefficient in the derived form at section Rd to that of the

parent at section Rp, i.e., Bd/B p These values may be seen

in figure 2.7. Additionally, if the maximum beam of the

derived form is different from that of the parent, the

offsets of section Rp also have to be multiplied by the ratio
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of the maximum beam in the derived form to the maximum beam

in the parent, i.e., bx/bpmax. Therefore, the equation

for any offset bd in the derived form is:

B bBd bdmax
bd- (2.21)Bp pmax

It can be seen in figure 2.8 that there are regions of

ambiguity. Such is the case where the derived curve lies

below a minimum in the parent curve. It has been this

author's experience confirming that in reference [ 8], that

the regions which cannot be explicitly be defined may be

faired in after defining the sections on either side.

The one remaining undesirable characteristic occurs

in regions where there is some form of keel rise, i.e., the

fore foot or skeg region. In these areas, if the draft of

the parent is proportionally altered to equal that of the

derived form, there is a concomitant and undesirable change

in the area of the section. It is to this matter which the

next section is addressed.
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2.2.5 A Method by which Constraints may be Placed on the

Ship's Profile

Since Moor's method proved capable of constraining

both the sectional area curve and the design waterline, it

was decided to extend the method to include the centerline

profile of the ship. The actual mechanics require only the

introduction of a local draft coefficient, (local draft/

maximum draft) into the denominator of the area/beam ratio.

This new ratio, (Area/Beam/Draft), is graphed and the sec-

tional shifts determined from this graph. In determining

the new offsets not only are the offsets of the parent

modified transversely as described in the previous section,

they are also altered in the vertical sense. This altera-

tion is accomplished by using the water plane as a reference

and moving the waterlines below a distance proportional to

the ratio of the derived form draft coefficient/parent draft

coefficient. Also if there is a difference in the maximum

draft of the derived form and parezd, the waterlines are

altered by this ratio as appropriate.

As was mentioned in the background section of this

chapter, section 2.1, for this modification technique to

be mathematicaliy rigorous the sections of maximum area,

maximum design waterline breadth and maximum draft must be

coincident. If this is not the case, the actual areas of
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the sections generated will be consistantly different by a

very small amount from what is desired. From the few

examples this author has worked, it is estimated the

difference in the value of C obtained and that desired is

on the order of 1%. The explanation of this is seen in

Appendix C.
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3. Mathematical Representation of the Lines of a Ship

3.1 Background

It was established in section 2.1 that before the

naval architect attempts to actually draw the lines of a new

ship, he must have a "firm" description of the new design as

represented by the various coefficients and curves of form.

Examples of these, as cited previously, are: the sectional

area curve, and hence Cp and LCB, the design waterline curve,

(Cw and LCF), the principle dimensions and perhaps specific

information about the geometry of the midship section or

stern region. These characteristics should represent what the

designer feels is the "optimum" solution to his set of re-

quirements. The naval architect now has to create one or

more,of a possible infinity of, design candidates which ful-

fill his descriptive coefficients.

The traditional method for drawing the various lines

of the ship is with the use of long, continuous strips of

wood, metal, or more recently plastic, held in the desired

position by weights. These tools are called splines and

ducks respectively. The curves produced by this method

were continuous but often times contained unwanted waviness.

Removing these unwanted undulations, while preserving the
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desired character of the line, is a process referred to as

fairing. This topic, and the implications of placing a

mathematical interpretation on it, are discussed in the

next chapter. Not only did the naval architect have to

generate smooth curves which pleased him visually, there also

had to be a consistancy in location of the surface points

when observed from the different views. This is sometimes

referred to as cross-fairing and is also addressed in the

final chapter. It is the fairing, and cross-fairing, which

represents a very large part of the manual design effort.

It was recognized long ago, that if the ship design

process was to be automated to any degree, a technique to

represent the lines of the ship mathematically would have

to be developed. This is especially true today where much of

the work is to be done by high speed digital computers. Not

only must the designer/programmer provide the mathematical

algorithms for representing the ship's lines, he must also

provide the logic necessary for the computer to duplicate the

heretofore trial and error methods of the draftsman. The

alternative to programming the logic however, would be to

give the system an interactive man-machine interface at the

decision points. It is, however, the mathematical repre-

sentation of these ships' lines to which this chapter is

devoted.
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3.2 Development

3.2.1 Derivation of the Spline Cubic Equation using a

Variational Approach

There are essentially two different methods by which

one may arrive at a mathematical representation for ships

lines.

1. Select some mathematical function with several

unspecified parameters whose values may be deter-

mined by some accuracy criteria and boundary

conditions. Typical of this approach is the use

of a polynomial and a least squares fit criterion.

2. Choose some smoothness and closeness of fit

criteria such that, when taken together with the

boundary condition, the function and parameters are

determined.

It is this second method, based on a variational smoothness

criterion, that will be developed in this chapter.

In general these variational methods involve the

minimization of the integral of some linear combination of

the squares of the various derivatives of the function

sought. In the case where the equation of the flexible

spline is sought, the "smoothness" criterion is taken to be

the minimization of the strain energy in the spline.
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Mathematically this may be represented by [9):

b()
fL(yy',y", y (n) x) dx - min (3.1)
a

where, for the spline equation (3.1) becomes:

I ck2ds (3.2)
s

s - the total path length

c - flexural rigidity of the beam

k = curvature defined mathematically as:

(1-y ' 2) 372

ds a elemental arc length

/I + y,7 dx

If these values are substituted into equation (3.2) the

smoothness criteria becomes:

Xy.2(3)
I dxmn (3.3)

xI  (l+y' z 5/

To complete the variational problem one must also

consider a "closeness of fit" criterion which takes the

following form:
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b
N - I F(y,y',y",...y ,f,x) dx (3.4)

a

It may be seen in most any text on the calculus of variations,

e.g., [101 that the criteria for smoothness and closeness

of fit may be combined by the introduction of the unknown

Lagrange multiplier 1 [101. The results of combining

equations (3.1) and (3.4) into a single variational

problem is:

b (n)
6 f {L(y,y',y",...y ,X) +
a

AF(y,y',y",...y (n),f,x)) dx - 0 (3.5)

A necessary condition for the integral in (3.5) to be

stationary is:

8(LXF d [ (L+X F) d 2  [3 (L+X F)]-
a(L+yF) a y'] + I TY"

dx

000(- 1 )n d [3(L+AF) - 0 (3.6)ny (n)"

with boundary conditions:

3L d OL + d2  6L 8 L d aL d2  aLTYr-U " - a,--" -Y-7" U TY_7V -- =_-V_

...)Sy' + x- L + )n-lb - 0

ay" aayln) a (3.7)
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Equation (3.6) is known as the Euler differential equation

for the variational problem presented in equation (3.5). The

usual procedure for solving this system of equations is to

first solve the Euler equation (3.6) in conjunction with the

boundary conditions, expressed in equation (3.7). This

solution results in an equation of the form y = f(A,x). This

equation is then substituted into the "closeness of fit", or

accuracy criterion of equation (3.4), to determine the value,

or values of A.

Another aspect of the mechanics of this procedure is

revealed when the accuracy criterion requires that the

resulting relationship for y = f(x) pass through a discrete

set of data points. Such is the case for a "colocative spline",

or a spline made to pass exactly through discrete data points.

In this instance the integral in equation (3.4) would become

a summation. However, in order to preserve the consistancy

and similarity of working with integrals in both portions of

equation (3.5), the Dirac delta function may be introduced

into F.

Redirecting attention to equation (3.3), it will be

noted that due to the complexity of the integrand, the

differential element of strain energy, the result of equation

(3.5) will not be closed form. In order to simplify the above

integrand it is assumed that the demonimator, (1+y'2)5/2 , is
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approximately 1. Or y'2 is very small. While this may not

be the actual case, if the value of y' is linearized as being

the value of the slope of the chord between two successive

data points, the integral in (3.3) might be thought of as

follows:

W(x) y2 dx = min (3.8)
x1

If we were to take some mean value for W(x) for the entire

domain of x, the minimization would be similar to the

minimization of:

,y." dx (3.9)
x1

It is also this simplification which will allow us to calcul-

ate a closed form solution to y = f(x).

One other simplification which will be made, without

harm to generality, is to assume that xC[0,1]. That is

0 < X1 < X 2 < ... < xm < 1. At this point we must

actually define the accuracy criterion. Assuming that the

curve passes exactly through the data points, we may say:

Y(xi) - fi i - l...m (3.10)
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Translating the conditions of (3.9) and (3.10) into the

single variational problem of the form of (3.5) we have:

1 m
6 1 (y"2+2 Z x.6(x-x.) (f-y)} - 0 (3.11)iJ0 -1J J
0 nj-

It should be recognized that the first delta (to the left of

the integral sign) is the symbol for the variation, while the

second is the Dirac delta function. f is any "candidate"

function passing through the data points (xj, y(xj)) and

the Xi's are to be determined from the accuracy criteria

of equation (3.10).

The resulting Euler equation (3.6) is:

iv m
y - A -6(x-x) 0 (3.12)=-1 JJ

The solution of this equation generates a function of the

following form:

m
YuAX) E A x-XjI + Ax 3+ Bx2

+ Cx + D (3.13)

Therefore the value of y and the integration constants A, B,

C, and D are all linear functions of the A 's.
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The boundary equation (3.7) for this specific problem

turns out to be of the following form:

1
[-y'" 6y + y" 6y'] = 0 (3.14)

0

It must also be noted that (3.13) is valid for 0 -x < 1.

While it is not intended to determine equation (3.13)

for every possible situation, suffice it to say that the

values of the X.'s and the constants A, B, C, and D are

uniquely determined by the coordinate points and the end

conditions of the curve [9). The essential points to be

made are:

1. For the criteria used, the equation for the

spline as obtained by the variational approach

is of the form of a multi-coefficient third

degree polynomial.

2. Where the curve is defined over the region (0, 1)

by m data points, there is also a need for four

additional pieces of information to satisfy, and

fully solve equation (3.13).

It will now be demonstrated that the form of equation

(3.13) is also supported by the theory developed for the small

deflection of elastic beams. As it turns out, the simplifying

assumptions made in the preceding derivation are exactly that
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which will be made in the small deflection theory. Neverthe-

less, the consistancy of results lends much reassurance.

3.2.2. Deflections due to Bending of a Simple Elastic Beam

In virtually any undergraduate strength of materials

course the subject of beam deflections may be presented in

several different ways 11]. However, it will be the

method of multiple integration which will be developed here.

Figure 3.1 -Strained Bean
Element (Pure Bending)

Referring to figure 3.1 above, it may be said that

the element of the beam deforms about the neutral axis and

that as a result, transverse plane sections remain plane after
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deformation. This results in an elongation of those fibers

outside of the neutral axis and a compression of those fibers

inside. Also, the amount of distortion is proportional to

the distance from the neutral axis. This being the case,

the following equations hold:

p p+c

or, by rearranging,

C '= 0 ,= -: 6 =Mc

P L E

therefore:

1 .M (3.15)
P EI

In the above equations the following definitions apply:

M - bending moment

E = the stiffness or Young's modulus

I = the moment of inertia of the cross section

P - the radius of curvature of the beam, measured to

the neutral axis

El - the "flexural stiffness" or "rigidity"

The mathematical expression for the radius of cruvature, or

more traditionally the curvature, K, is defined as follows [12]:

50



1 K d 2 v/dx2

o [1+ ( xx 213/2
x (3.16)

It is to this equation which the simplification is applied.

For actual beams it is assumed that the value of d s very

small, hence, ( x)2 <<l. If this is the case, the expression

for curvature becomes:

I= d (3.17)

dx

Therefore, when equations (3.15) and (3.17) are combined,

the results are as follows:

1- 2

EId M 1(x) (3.18)
dx

Here, M(x) is meant to indicate that the bending moment is a

function of x.

At this point we must address ourselves to the

equation for the bending moment in a beam. Specifically,

we will look at the results of loading a uniform elastic

beam with concentrated point loads; remembering that this

case most closely approximates the naval architect's ducks

and splines.
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Figure 3.2 - Discretely
Loaded Beam

It is advantagious, at this time, to introduce the

concept of the singularity function defined as follows:

- (Xi > (3.19)

With the aid of the singularity function, and in reference to

figure 3.2, the bending moment equation obtained from the

application of concentrated point loads is:

M(x) -P 0 x + P<X -X 1 > + P2<x - 2> +

Pn<X- Xn> (3.20)
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It should be obvious that when equation (3.20) is

substituted into equation (3.18) the result may be twice

integrated to obtain an equation for y f(x) which is ofthe following form:

1 3 3 3EIy(x) =A + Bx + {Pox + P<x -x > + P2 <x -x 2 >

Pn<X - Xn > 3  (3.21)

The above equation is of a form very much the same as equation

(3.13). The essential difference is that in equation (3.13),

the values of the end forces Po and Pn were still unknowns

requiring the statement of two conditions at each end of the

beam. It should also be apparent that the resulting values

of the Ai's are nothing more than 2EI times the forcesIJ
required to keep the beam in equilibrium. Therefore, based

on the results of this and the previous section, it will be

accepted without further discussion that the third degree

polynomial, or cubic, is an adequate model of the ducks and

splines of the naval architect. Hence the term "spline

cubic".
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3.2.3 Piece-wise Continuous Cubic Polynomial Approximation

Yo

Xt  X& x X"_1 Xr% X

Figure 3.3 - Spline Curve

Fitting Routine.

Referring to figure 3.3 above, it is desired to

approximate the curve y(x) by some series of cubic functions

of the form:

gj(x) aj (x-x ) 3+bj (x-x ) 2 +cj (x-x )+dj (3.22)

th
where j represents the j interval bounded by x and xj 1 ,

and 1 - j - n - i, n being the number of data points. In

order for these segments to be continuous we impose the

following conditions:
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g. (x) = yj

(1) gn-l(xn) M y - ,2,...n1

(2) gj(xj+1 ) - gj+l(Xj+l) 3-1,2,...n-2

(3) g!(xj+1) = g!+(x3+l) j-l,2,...n-2

(4) g(xj I) = g!+l(xj~l) j=1,2,...n-2

From equation (3.22) it should be recognized that to fully

describe the curve requires 4(n-1) unknown coefficients.

However, the above equations provide 4n-2 conditions. We

therefore require two more conditions. The obvious choice

for these two additional constraints would be to specify the

end conditions for the beam. Specifically, you would specify

either g' or g" at the ends.

For the sake of brevity the remainder of this deriva-

tion will be abridged to include only the essential equations.

For a complete and detailed description of this procedure the

reader is referred to references [13] and (141.

Continuing with the derivation, the following

definitions will prove useful.

h xj+1 - xj (3.23)
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D - (yj+I - yjI/hj (3.24)

we may now relate the unknown coefficients in the following

manner:

W7- (j) (3.25)

S.

b . (3.26)

Cj = D1--ji (2sj + j+1 1  (3.27)

d= yj (3.28)

Substituting these equations into condition (3) will generate

a relationship between successive values of s of the

following form:

sjh + 2(hj + hi+ I) sj+ 1 + j+2 h -6(D - D)
i ~ l J1+ j2j+l j+1 j

j - l,2,...n-2 (3.29)

Equation (3.29) will thus generate the following system of

equations:
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2(h1+h2) 0 h 2 0 2 6(D2-D1)-s1 h1

h2 2(h2 +h 3  h 3  a3 6(D3-D 2)

* .~n °hn-.3 Z(hn-3+hn-2  hn-.2.

hn 2(hn-.2+hn-.i n-l 6 (Dn iDn

n- n-i nh n-lSn

(3.30)

It can be seen that, for any point x,, sj is the curvature

at that point. For the above system of equations if the

curvature is known at the end points, i.e., s1 and sn, the

curve will be completely defined.

If instead of curvature the slope is specified at the

end point, the above matrix will be modified slightly. In

this case, the value of the curvature at the end point will be

unknown. For the situation where the beginning slope is

specified the following changes will occur. From equation

(3.27):
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D T (2S + a Cl = ti

or 2s1h1 + s 2 h 1 - 6(D 1 - t 1 ) (3.31)

The effect on the matrix system will be to change the currently

existing top row and then add another top row and left

column as follows:

rhl h 1  . s 1 6 f(D 1 t 1

If the end slope is specified a change of similar form takes

place only adding a row to the bottom and a column to the

right side as follows:

h n-2 2(hn_2+hn- hn-l Sn-l 6 (Dn-l-Dn- 2 )

hn-1 2hn- a n 6(-Dnl+tn)

The form of the above matrix is tridiagonal and lends

itself to rapid solution by a recursive relationship [141.

This fact will save a significant amount of computational

time when reduced to a computer algorithm.

58



-.. --

3.2.4 The Rotating Spline [15]

One particular disadvantage of the "piece-wise

cubic" method developed in section 3.2.3 is that it will not

provide a solution for curves having infinite slopes. It is

for this reason that method of the "rotating spline" was

developed. Referring to figure 3.4 it may be related that

this procedure is merely a modification of the "piece-wise

cubic" technique.

YY

Figure 3.4 - Rotating
Spline Routine

For this method of curve approximation a cubic

polynomial is generated for each interval as before. However,

in this case the coordinate system is redefined for each
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interval, and the cubic equation is generated with respect

to this local coordinate system.

Appendix E contains the steps necessary to generate

the computer algorithm. There is, however, one definate

disadvantage to using a rotated coordinate system. In order

to obtain an interpolated ordinate on the curve the

following two parametric equations must be used.

x = x +(xi+l-i) t-(yi+l-yi)t(l-t) [a i (l-t)-bit]

(3.32)

and

y = yi + (yi+-yi)t+(Xi+-x i ) t(l-t)[ai (l-t)-bit

(3.33)

Both of these equations are third degree polynomials in the

parameter t. To solve for some value y of the point (x,y)

in the unrotated coordinate system, x is used in equation

(3.32) to solve for t such that 0 < t - 1 and t is also real.

This value of t is then used in equation (3.33) to calculate

y. It should be pointed out that the quantities ai and bi

were determined previously as described in Appendix E.

In summnary, we have shown by two methods, variational

calculus and simple beam theory, that the third degree or

cubic polynomial provides a good representation of the thin

elastic spline used in drawing ships lines. There was,
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however, the disadvantage that the equations were not capable

of representing curves having infinite slopes. For this

reason the method of the rotating spline was introduced.

This parametric method permits the representation of

virtually any continuous curve, including those which are

non singular.
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4. Mathematical Fairing of Lines

4.1 Background

It has been stated previously that the lines fairing

process can be the most time consuming aspect of the ship

design cycle. For this very reason fairing becomes a prime

candidate for automation. The difficulty, however, lies in

the fact that obtaining a universally accepted mathematical

definition of a faired line, or the fairing process itself,

is a virtual impossibility. Perhaps the most general defini-

tion, and one which would prove the least restrictive, is

the following:

A faired line is one which retains

the desired "character" but eliminates

any undesired waviness or fluctuations.

It will be shown in the following sections that this

result may be achieved by fitting, in a least squares sense,

a third degree polynomial to a set of four or five data

points. The number being dependent upon the desired boundary

conditions. In addition to the similarity of the third

degree polynomial to the form of an elastic spline, the

polynomial also provides the capability of introducing a

desired inflection point into a series of data points. It
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also prohibits the introduction of multiple inflection points

and undesired waviness, also an asset. Because of these

characteristics and the excellent results demonstrated in

reference [16], this "least squares" criteria was employed

as the foundation of the fairing process.
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4.2 Development

4.2.1 The Least-Squares Criteria for Defining the Cubic Curve

It was established in chapter three that the cubic

polynomial would provide a "good" approximation of the shape

of a spline used to construct the lines of a ship. What

remains to be shown is how these polynomials are applied in

order to generate the faired position of a set of data

points.

Y
CurCurve

XI X X
X1 X 1 X3 X4 X3 X

Figure 4.1- Lemt Squares Fit

P(x) a0 + a1x + a2x 2 + a3x 3  (4.1)

1.12 64
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Referring to equation (4.1) above it should be

recognized that, in order to uniquely specify the cubic

polynomial in its general form, four independent pieces of

information are required. The result of applying this

information is to determine the values of a0 , al, a2 and a3.

This will produce a curve which exactly conforms to the given

requirements. This is illustrated as curve I in figure 4.1

where the curve is required to pass exactly through the first

four data points. The disadvantage of using this type of

curve is that, since it is required to pass exactly through

the given data points, it is unable to modify their position.

It is this alteration however that is necessary if the curve

is to be "faired".

As stated above, four pieces of information are

required to uniquely specify the cubic polynomial. If, how-

ever, we were to over specify the requirements of the curve

and then demand that the solution satisfy these requirements

in some "best possible" but not exact manner, we begin to

get a feel for how fairing can be produced. Mathematically

this can be stated as follows.

Referring to curve II in figure 4.1 we will require

that our resulting curve pass as close as possible to the

five given data points. Usually this translates into a
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mathematical form by requiring that the sum of the squares

of the distances between the curve and the given data

points should be minimized.

5
s [yi - (,0 1 alxi I ax2 +  a x 3" 2 (4.2)

il ~ a0 +ax~+ 2xj + 3x )

or

as= as a- = 0
aa0  aa1 . a 3

These derivatives generate the following system of normal

equations which can be solved for a0 ... a3.

so0 sI  s2  a3  a0  t

85 s2  s3 s4 a1  t1
= (4.3)

82  s3  s s5  a2  t2

s3  s4 s5 s6 a3 t3

Where sk and tk are defined as follows:

5 k
sk E x i (4.4)

i-l
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t i Yixi (4.5)

It can be seen that curve II in figure 4.1, while not

passing exactly through the data points, passes "fairly

close" and also displays a smooth and continuous character.

It is this closeness of proximity, or minimization of the

least squares difference, procedure that is the essence of

the fairing criteria used in this thesis.

The following sections will develop the equations for

line segments whose end position and slope or just end

position are fixed. First, however, a brief explaination

of how these segments are applied to fair a complete line

or set of data points.

4.2.2 The Moving Strip Method

In the procedure described above it was seen that a

least squares spline was passed through five data points and

the points on that line were then considered to be fair. In

order to fair a complete set of initially unfair points

consider only five points at a time, i.e., P to Pk+4"

After passing a least squares spline through these five

points obtain the faired position of point Pk+2" Then move
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the strip one unit (k = k+l) and consider the next five

points, P to Pk+4' fairing P For each step we could use

previously faired values for Pk and Pk+l expecting our final

solution to be obtained more rapidly. By walking this strip

of five points through the entire set of data the faired

position of each point may be obtained. This procedure may

also be found in references [16, 17].

The following three sections develop the equations

needed when considering data points whose boundary conditions

are of the following type:

1. Free end--the position and slope of the end is

unspecified.

2. Pinned end--the end position is fixed but free

to rotate.

3. Clamped end--end position and slope are fixed.

4.2.2.1 STRIP1: Fairing an interval with free ends.

This procedure is the same as that developed in

section 4.2.1. It is this routine which is used to fair

the center data point (Pk+2) of five interior data points,

i.e., Pk 3 P and Pk+4 P' where P and Pn are the first

and last points respectively in the set of given data. This

routine is also used to fair Pit P2, Pn- and Pn for the

case where the ends are free to both rotate and translate.

68



Repeating equations (4.3) to (4.5) for convenience.

a1 8 a a

0 So S 2 s3- -0- --

2  3 4 1
= (4.3)

2 3  4 s5 a2  2

s3 s4 s5 s6 a3  t3

and
k

S Z xk  (4.4)k i=l

YiXk (4.5)
tkE Y.i=1 1

also

P(x) =a 0 + a1x + a2x 2 + a3 x3 (4.1)

Therefore the faired position of the second and third points

in the five point strip are:

Y2 w P(x2 ) and Y3 - P(x 3 )

For the case of a free end point the first point becomes:
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- (x1 )

It would be fair to expect that the equation P(x)

would be most representative of the actual curve at its

interior regions where uncertainty about end conditions

would have less effect. For this reason only the center

point of a strip is recalculated as being faired, i.e.,

Pk+2 as opposed to recalculating both Pk and Pk+l"

4.2.2.2 STRIP2: Fairing an interval with pinned end.

Y

0

ama

X1 XI X 3  X&. X3

Figure 4.2- Pinned End
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In fitting the curve of equation (4.1) to the five

data points in figure 4.2 above, we require that P(x1 ) M Y-

exactly. If in our calculations we adjust the abscissas

such that xI - 0 we may simplify this equation to:

P(x) Y, + alx + a x + a3 x (4.6)

Applying our least squares criteria to this we obtain the

following normal equations:

s2  s3 34 a1  t1

3  a4 3 5 a32  t 2  (4.7)

54 s5  6  3  3

where

5 k

k5 (4.8)
i-2

tk - 5E (yl-y 1)Xjk (4.9)
i-2

and

x i  X i x

71



With the values of al. a 2 and a 3 computed from equation (4.7)

we can calculate the faired position of points P 2 and P 3

-2 P ') Y3 -P(xP)

where

After these two points are determined STRIPl can be applied

to continue the fairing process

4.2.2.3 STRIP3: Fairing an interval with clamped

ends.

y

q

I 0

I I i 3X

'I Fig ure 4.3 - Clamped End
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in order to fair an interval with both position and

slope of the first point fixed we will consider only the

first four points as shown in figure 4.3 above. In order

to simplify the derivation we once again adjust the abscissas

such that xI - 0. For this case equation (4.1) becomes:

P(x) = yl + qx + a 2 x 2 + a3x 3  (4.10)

After applying the least squares fit criteria to the four

data points the normal equations obtained are:

5 4 s 5a 2t2
- (4.11)

s]5 s6 a3 t3]

where

Zs x k (4.12)-. i-2

4 ktkE (y, qxi Y 2 x (4.13)
i-2

and

SXI-xi - x
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For the simple 2 X 2 system above a2 and a3 may be written

as follows:

t2s6 - t3s5
a 2  6 3 2 (4.14)

486 5

a3  2(4.15)

s4s6 -5

where

4 s5

s5  s6

Using the values of a2 and a3 calculated the faired position

of the second point may be readily determined as:

-P(x;)

where

x x2 - x
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After fairing the second point STRIP1 can be applied to

continue the fairing process, fairing point three and four

the first time it is applied.

4.2.2.4 TRANSi: Fairing the last points in a given

sequence of data.

As can be seen in the previous sections, the fairing

procedures operate on a series of points with monotonically

increasing abscissa and end conditions specified at xl1

where x1 < x2 < .... At the time when the five point

fairing interval reaches the other end of the curve, i.e.,

Pk = Pn-4' the following transformation must take place:

xi. = X n -o l " y n

xi= xn - Xn_1 y = Yn-

xi= xn - x= Yn-2 (4.16)

X 6 Xn - Xn_3  Y4 ' Yn-3

xi xn - Xn_4  Y5 = Yn-4

This allows the fairing of the last three points as if they

were the first three points. Once these three points are

faired the reverse transformation is employed to place Yj

into y n etc.
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4.2.3 Fairing of Curves with Infinite Slopes

In ship design it is not infrequent that lines are

encountered which possess infinite slopes at one or both

end points. Such is the case of a section through the bow

of a ship equiped with a bulbous now. Here if the offsets

y are expressed as a function of z, an infinite slope will

occur at the bottom of the bulb. While the parametric

rotating spline of section 3.2.4 will accommodate such a

form, the simple cubic polynomial of equation (4.1) will

prove indeterminate for an interval containing an end point

with infinite slope.

i Y

R

X= X3 X. X

Figure 4.4- Axis Rotation
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Referring to figure 4.4 above, it can be seen that if

the axis are rotated by some small anle 8, and the data

points are redefined in this new coordinate system the

fairing process may be carried out as normal. The following

equations relate the coordinates in the two coordinate

systems.

x1 = x cosO + y sine

~(4.17)

y' - -x sine + y cos}

x = x' cos6 - y' sine

(4.18)

y = x' sine + y' cose

It is also assumed that for small values of 0, e.g., 100:

Ay a Ay, Ax a Ax' - 0 (4.19)

In order to continue the fairing process the faired

position of the first three points and the slope at the

third point could be calculated in the rotated coordinate

77



system and then transformed back into the unrotated coordinate

system. The faired position and slope of the third point

could be used to continue the fairing in the unrotated plane.

The following slope transformation is also helpful.

- tan (arc tan( )+ 61 (4.20)dx X

4.2.3.1 Other transformations.

There are any number of transformations one could

use to accommodate the problem of the infinite slope. One

tried by this author was that of letting [18]:

x -(1 - cos e)

2

or 0 x i (4.21)

8= arcos (1 - 2x)

The curve is then plotted as a cubic in e. This has the

advantage of eliminating an infinite slope at x 0; in fact

dy/de /-/7, where r is the radius of curvature of y = f(x)

at x - 0. The disadvantage, as seen by this author, is that

fairing will take place in the distorted y,6 plane. Addition-

ally, even though the resulting curves appear to be aesthet-

ically pleasing, some apprehension exists regarding the use
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of lines faired in the two coordinate planes. For this

reason the author opted for fairing in a rotated coordinate

system as opposed to one which was distorted.
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5. Computer Algorithms

5.1 Overview

The system of subroutines developed in this thesis

were designed to provide two distinct capabilities: (1) to

provide a means of fairing a series of data points not pre-

viously considered fair, and (2) to provide the capability of

representing a series of data points by an analytical

mathematical expression. This second feature would also

provide a means by which slopes, curvatures, etc. could be

determined by interpolation. The theory of these two pro-

cedures was developed in chapters four and three respectively.

The ultimate objective of these subroutines would be

their utilization in-a program to fair and draw an entire

ship form. Because of this and the virtually infinite nature

of the lines existing in a hull form, the program has to be

capable of handling many line types. As an example of this,

see figure 5.1, the programs require the following information

as input.

1. Independent variable coordinates.

2. Dependent variable coordinates.

3. Data point type.

4. Number of data points.
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5. Type of end conditions.

6. End slopes if required.

7. An indication as to whether the input data

is fair as submitted.

The only other pieces of information required for

fairing are:

1. TOL: Is a tolerance representing a limiting
distance which any data point may be
moved in the fairing process.

2. ACC: This number represents an accuracy
which, if during the fairing process
a point is not moved by more than this
amount, it is considered to be in a
faired position.

3. LIMIT: This number sets a limit on the
number of iterative cycles permitted
in the fairing process.

5.1.1 Specification of Point type

The designation of point type is designed to be as

consistant as possible with reference [19].

POINT TYPE : DEFINITION

0 : Normal point at the beginning or
in the interior of a continuous
curved line segment.

1 : Break point at the end of a continuous
curved segment. At present this point
is treated as if it were.pinned. The
slope, while unspecified, is discon-
tinuous.
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Figure 5.1 - Point Type Examples
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3 This point can be at the beginning,
middle or end of a straight line
segment. The slope is continuous at
this point. This poi"t must be
specified where a curved segment
joins a straight line segment since
the point is considered to be a
clamped end condition for the curved
segment.

5 Break point at the end of a straight
line. The slope is discontinuous at
this point.

5.1.2 Specification of End Conditions

The end condition designation is made with a two digit

real number of the following format, "B.E". Here B corres-

ponds to the end conditions at the beginning of the line and

E the end condition at the end of -the line.

END TYPE DEFINITION

1 Free end. The end point is free to
both rotate and translate.

2 1 Pinned end. The end point is free
to rotate only, the position is fixed.

3 Clamped end. The end is totally con-
strained. It is free to neither
rotate or translate. The slope must
also be defined.

4 Clamped end with infinite slope. The
slope, whether ± is determined by
the second data point, i.e., + -
if Y2 > yl or - if Y2 < y
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5.1.3 Storage of Pertinent Line Data

The information necessary to fully describe any line

is stored in a 32 x 7 two-dimensional array. This array is

labeled CRV in the subroutines and its elements have the

following significance. At present the first thirty rows

are for data point or interval information and the last two

rows are for overall curve characteristics. This could be

easily expanded to allow more input data.

1. Colume 1, CRV(I,1) to CRV(30,1):
Abscissa of the input data points.

2. Colume 2, CRV(l,2) to CRV(30,2):
Ordinates of the original data points.

3. Column 3, CRV(I,3) to CRV(30,3):
The faired ordinates of the data points.

4. Column 4, CRV(1,4) to CRV(30,4):
The point type, see section 5.1.1.

5. Column 5, CRV(l,5) to CRV(29,5):
The values of ai as defined in Appendix D.

6. Column 6, CRV(l,6) to CRV(29,6):
The values of bi as defined in Appendix D.

7. Column 7, CRV(l,7) to CRV(30,7):
The slope of the curve at the data points as
defined in Appendix D.

It should be noted that the elements of columns 5, 6 and 7

are c.1tained as a result of the splinning option. The data

in column 3 are obtained as a result of exercising the

fairing option.
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EL-EMENT DEFINITION

CRV(31,2) : The number of data points. At present,
61CRV(3l,2)13O.

CRV(31,3) : The slope at the beginning of the
curve. Left blank if not specified.

CRV(32,1) : An indication of the fairness of the
curve.
l.-the data submitted is fair.
2.-the data submitted is not fair.

CRV(32,2) : End condition specification, see
section 5.1.2.

CRV(32,3) : The slope at the end of the curve.
Left blank if not specified.

The other elements of the CRV matrix are reserved for future

use, e.g., in a full ship fairing program.

There are three other aspects of the program which are

of the utmost importance. As was seen in the development of

chapter three, the mathematical curve representation, or

splinning procedure is fully capable of accommodating multi-

valued curves. The fairing option, however, requires that a

curve be single valued over the domain of the independent

variable. Therefore, while it is possible to fit a cubic

curve to virtually any series of data points, care must be

observed when exercising the fairing option. The second

inviolable characteristic of the program is that the data

points must be submitted in a monotonically sequential fashion,

i.e., the points must not be submitted in a random fashion,
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but rather as they are encountered while following the path

of the curve. The last consideration is that in order to fair

any curved line segment there must be at least six data

points in the continuous curved region. This is true regard-

less of the end conditions of the line as a whole or the end

conditions for a line segment.

86



5.2 Description of Subroutines

A flow chart and subroutine listing may be found in

Appendix P.

5.2.1 Lines Fairing

The subroutines included in this section are utilized

to calculate the faired position of the given data points,

i.e., column 3 of the CRV matrix.

5.2.1.1 Subroutine PREFAR

This subroutine takes the data in the CRV matrix

and loads all the points on a continuous curve segment into

three linear arrays; X( ), Y( ) and YORIG ( ) representing the

abscissa, faired ordinate (the original ordinate for the first

iteration) and the original ordinate respectively. This

process is governed by the value of point type, CRV(I,4).

With these arrays established PREFAR calls either FARCRV or

FARLIN, depending on whether the curve segment begins with

an infinite slope.

Upon final return to this subroutine the values of the

faired position of the data points will have been calculated

and placed in column three of the CRV matrix.

87



5.2.1.2 Subroutine FARCRV

This subroutine takes the data in the X, Y, YORIG

array, for those line segments which have infinite slopes,

rotates the coordinate axis 100(w/18 radians) and then places

the transformed points, equation (4.17), in an XPRIM, YPRIM

and YOPRIM array. The subroutine then calls subroutine

FARLIN to fair the first six data points in the rotated

system. At this time subroutine SPLINE is called to determine

the slope at the third point, also in the rotated system.

The subroutine then completes fairing the remaining data

points by matching the position and slope at the third point,

in the unrotated system. That is, assuming point three to be

clamped and beginning with STRIP3.

5.2.1.3 Subroutine FARLIN

This subroutine takes the points of a continuous

curve segment and calls the various STRIP_ subroutines which

actually compute the faired position of the points. FARLIN

also calls subroutines FSTPTS and TRANS1 to fair the first

and last points in the sequence.
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5.2.1.4 Subroutine FSTPTS

This subroutine fairs the first three data points in

a sequence of data points based on the end condition. STRIP1,

2 or 3 are called as appropriate.

5.2.1.5 Subroutine TRANSI

This subroutine fairs the last three data points

based on the end condition specified. Specifically it

transforms the abscissa in accordance with equation (4.16).

5.2.1.6 Subroutine STRIP1, 2 or 3

These subroutines are described in detail in sections

4.2.2.1 to 4.2.2.3. They use, as arguments, the variables

in the Xl, Yl and YO arrays. Additionally they require

values of TOL and ACC which place limits on the amount which

a point may be moved and the amount of mtvement

which is considered to be negligable. For the case where the

point would move by more than TOL from its original (unfaired)

position, its movement is limited by the value of TOL.

5.2.2 Lines Representation

The methodology of representing a line by a parametric

cubic equation was developed in chapter three. The actual
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sequence in which the process is executed is described in

the following sections.

5.2.2.1 Subroutine PRESPL

This subroutine examines the input data in the CRV

matrix and places elements of continuous curved line segments

into the X, Y and YORIG arrays. This assignment is based on

data point type found in column four of the CRV matrix.

Referring to figure 5.1A, the program would load the first

eight points into X, Y and YORIG. Point nine, point type 5,

would be used in conjunction with point eight to determine

the slope of the curved segment ending at point eight. The

program then calls SPLINE to carry out the actual curve

fitting algorithm.

5.2.2.2 Subroutine SPLINE

This subroutine uses the data in X, Y and YORIG

obtained from PRESPL and carries out the curve fitting

algorithm presented in Appendix D. Although many intermediate

terms are calculated, the only terms which are retained are

ai, bi and di, these quantities are subsequently used to

calculate interpolated values of the independent variable

and slope at a point specified by the user.
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5.2.2.3 Subroutine INTERP

This subroutine determines the interval in which a

desired value of a dependent variable is located. It then

passes the coordinates of the surrounding points and the

values of ai and bi for the interval to subroutine CALCY

which calculates the value of the dependent variable and

slope at the desired point.

5.2.2.4 Subroutine CALCY

This subroutine calls CALCT to obtain the value of the

parametric variable T. With the value of T the interpolated

value of the independent variable is determined. Since the

dependent and independent variables are represented para-

metrically, the slope of the curve is calculated by the

chain rule as follows:

AX .(5.1)
dx FEtat

since the value of T is determined as being the root of a

third degree polynomial, CALCY is designed to calculate the

interpolated value of the independent variable and slope

for up to three unique and real values of T. However, the

subroutine is designed to print a warning that additional

points are needed to specify the curve if T has more than

one real value.
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5.2.2.5 Subroutine CALCT

This subroutine calculates the roots of the third

degree parametric polynomial in T using the algorithm in

reference [20]. This procedure is also presented in Appendix

E for the readers' convenience. It should be realized,

however, that only the real roots are calculated in the

subroutine, the imaginary roots lack physical significance

for the purpose of lines plotting.

Appendix G contains an example of a data set that was

first faired then splinned and then interpolated at points

equal ta,'ene-twentieth of the domain of the independent

variable. Once again it should be emphasized that, in order

to fair a curved segment, at least six data points must be

defined in that segment, including the end points of the

segment.
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6. Conclusions and Recommendations

6.1 Hull Form Modification

When work on this thesis began, the initial goal

was to develop a series of destroyer-like hull forms for

future use in seakeeping analysis. Preliminary efforts, using

the method of longitudinally shifting sections [2,8], while

showing promise, indicated that additional work would be re-

quired if the procedure was to apply accurately to destroyer

type ships. Specifically, the method had to be adapted to

ships whose maximum beam and section of maximum area did not

lie at midships. These necessary changes were made success-

fully and the method was also extended to provide control

over the ship's centerline profile. The primary motivation

for this extension was to gain control over the hull form in

the region of a sonar dome. While there was some apprehension

about the criticality of changes to the geometry of the sonar

dome, a telephone call to the Naval Sea Systems Command in

Washington, D.C. [21], indicated that because of acoustic

and hydrodynamic considerations the dome design should be

maintained unchanged.

The resulting procedure for modifying hull forms does

provide good results for that portion of the ship below the

design waterline. However, as outlined in chapter two and
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Appendix C, there are situations where the method does not

provide exact results, e.g., when the station of maximum

beam and section of maximum area do not coincide. Another

unresolved weakness of the modification scheme is that it

still does not provide the degree of control over specific

hull regions often desired, e.g., an attempt to preserve

the configuration of a sonar dome will result in preservation

of the centerline profile only, the three dimensional geometry

of the dome will be uncontrollably altered.

In summary it has been concluded that the modification

technique holds a great deal of promise for use with automated

methods. In particular, the procedure as it currently exists,

will provide excellent results when dealing with ships for

which there is no rigid requirement to keep a specific region

fixed. Not only are the desired coefficients and characteris-

tics obtained, the resulting hull forms appear to be acceptably

fair.

As with virtually all work of this type there is still

need for additional development. Specifically, it is felt

that those aspects worthy of attention are:

1. Investigate a means of controlling the resulting

hull form above the design waterline. At present,

excessive flair or tumblehome frequently occurs.
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2. Investigate a means of rigidly controlling the

geometry of a specific region of the hull. This

would provide a solution to the problem of

keeping the sonar dome unaltered.

3. Develop a computer program to carry out the

extensive mathematical and graphical calculations

required by the method.

95



6.2 Mathematical Representation of Lines and Fairing

6.2.1 Lines Representation

in chapter three it was demonstrated, by variational

calculus and by simple beam theory, that a third degree or

cubic polynomial could be used to approximate the shape taken

by the draftsman's spline. However, it was also pointed out

that the simple cubic polynomial became indeterminate if the

curves contained infinite slopes. For this reason, and also

because they are capable of representing multivalued functions,

the parametric cubic equations of reference [151 were incor-

porated into this thesis. The results obtained using this

method have proven to be excellent. Not only does the tech-

nique lend itself readily to being programmed, the parametric

form of the curve allows the user to define either variable

as being the independent variable for the purposes of inter-

polation. The benefit of this capability will become

apparent in the discussion of cross fairing.

The only disadvantage, as seen by this author, to

using the parametric equations is that they require the user

to calculate the, up to three real roots, of the polynomials

each time an interpolated value is sought. However, this

is not seen as being restrictive since a closed form solution

exists for calculating these roots and is in fact utilized in
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subroutine CALCT. Therefore, because of its great flexibility,

the parametric, or rotating spline technique of chapter three,

is highly recommended for use with a lines fairing scheme

involving the manipulation of specific waterlines and sections.

6.2.2 Fairing

The least-squares fairing criteria, as presented in

chapter four, has shown to provide an effective means of

altering the position of data points in order to obtain the

desired "fairing" effect. That is, if provided with an

adequate tolerance interval, the cubic spline passed through

the resulting points will be void of extraneous oscillations

and generally pleasing to the eye. When addressing the lines

of a ship in the preliminary design phase, the fact that the

lines satisfy a visual inspection is likely to be sufficient.

For this reason, and also the excellent results obtained by

this method in reference [16], this author has concluded

that this scheme would be a candidate for a complete lines

fairing program for destroyer-type ships.

6.2.3 Recommendations

It is obvious that, given the capability of repre-

senting lines mathematically and also a means to fair the

points on a line, the next step would be to generate a method
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which would fair, in the three-dimensional sense, and display

an entire ship. This author has spent a great deal of time

attempting to extend the methods of reference [161 in a more

general form to accommodate the peculiarities which arrise

in addressing displacement-type ships. The difficulty arrose

from two sources. First, an attempt was made to treat the

entire ship, i.e., the bow and stern were not truncated as

was the case with other methods examined. Second, in trying

to treat a large variety of ships, conveniently called dis-

placement-type, the author was confronted with the problem

of attempting to describe the myriad of lines of discontinuity

which one may encounter. These lines are most frequently

termed control lines and may consist of the ship's profile, in

an obvious sense, to the locust of points, longitudinally,

where rise of floor and bilge radius meet, in a more subtle

sense. Figure 6.1, for a typical bulbous bow destroyer

illustrates a few of the possibilities.

If we were to ignore the fairing algorithm itself

for a moment, it can be seen that if a waterline A-A is taken

in figure 6.1A there must be some means of communicating the

effect of control line #6 on the waterline; where the explaina-

tion of the control lines is contained in table 6.1. For this

case, the effect is to create a straight line region in A-A

as projected in figure 6.1B. A tentative solution to this
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TABLE 6.1

Explaination of Control Lines

1. Bow profile

2. Locus of stern radius centers

3. Sonar dome profile

4. Main deck centerline profile

5. Deck edge profile

6. Extent of deadrise

7. Forward extent of parallel middlebody

8. After extent of parallel middlebody

9. Keelrise aft

10. Outboard transom profile

11. Transom centerline profile

12. Deck edge waterline

13. Forward extent of parallel middlebody

14. After extent of parallel middlebody

15. Extent of deadrise

16. Outboard transom profile

17. Deckedge transom profile

18. Section view of transom
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problem would be to ascribe to each control line, over a

region where applicable, a code designating the effect of

the control line on waterlines or sections at the point of

intersection. This could be easily done by assigning another

column to the CRV matrix description of the line, see section

Another complication which must be resolved is:

when attempting to establish the offsets for, say an arbitrary

waterline, how do you seek out where this waterline intersects

which control lines. In the most general case, where control

lines could occur at random through a hull form this problem

could prove to be formidable at least. As seen by this

author, the only solution to this problem is to have only

certain control lines admissible for a particular class of

ship. This would necessairly limit the possible intersection

combinations. The control lines shown in figure 6.1 represent,

what this author feels, are typical of a contemporary destroyer.

The final aspect to be addressed is that of the cross

fairing algorithm itself. Reference [161 showed that by

utilizing a preassigned grid in the X-Z plane the offsets

(y-coordinates) at these points could be repeatedly by faired

and splined by both lines of section and waterlines. The

new, or faired value of each point was taken to be the mean

of that obtained by fairing the two lines. These mean values

were then used as unfair data points on the lines once again
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and the fairing process was repeated. This iterative pro-

cedure was continued until the movement of the points on

successive iterations was less than some predefined limit.

The results of this cross fairing algorithm [161 proved to

be quite good. Because of this, it is felt that this pro-

cedure would also prove satisfactory for the more general

method of lines fairing and representation presented in this

thesis.

As a final note, this author can envision where

the two independent aspects of this thesis could be combined

into one program of significant value. If both the fairing

procedure and lines modification techniques were automated,

it would provide the designer with the capability to sketch

out a rough design on the back of an envelope, specifying

its fundamental coefficients and dimensions, and then by

passing this information through the fairing and modification

routines a faired form could be obtained. The implications

of this, as a savings of time and resources, are quite

astounding. If the method were further extended to permit

an interactive modification of the design, an individual

could literally sit down and design a faired vessel in a

matter of hours instead of days.

102



REFERENCES

1. Loukakis, T., Chryssostomidis, C., "Seakeeping Standard
Series for Cruiser-Stern Ships*, Transactions,
Society of Naval Architects and Marine Engineers,
Vol. 83, 1975, pp. 67-127.

2. Lackenby, H., "On the Systematic Geometrical Variation
of Ship Forms", Transactions, Royal Institute of
Naval Architecture, Vol. 92, 1950, pp. 289-315.

3. Chryssostomidis, C., "Computer Aided Ship Design",
Paper, New England Section Society of Naval
Architects and Marine Engineers, May 1978.

4. Comstock, J.P., "Principles of Naval Architecture",
Revised, The Society of Naval Architects and
Marine Engineers, 1967, New York, New York.

5. Coons, S.A., "Surfaces for Computer-Aided Design of
Space Figures", M.I.T., ESL Memorandum 9442-M-139,
July 1965.

6. Gertler, M., "A Reanalysis of the Original Test Data
for the Taylor Standard Series", TMB Report 806,
March 1954.

7. S~ding, H. and Rabein, U., "Hull Surface Design by
Modifying an Existing Hull", Paper presented
at the First International Symposium on Computer
Aided Hull-Surface Definition, Annapolis, MD.,
September 1977.

8. Moor, D.I., "Effects on Performance in Still Water
and Waves of Some Geometric Changes to the Form of
a Large Twin-Screw Ship", Transactions, Society
of Naval Architectects and Marine Engineers, Vol.
78, 1970, pp. 88-150.

103



9. Mehlum, E., "Variational Criteria for Smoothness",
Paper for Central Institute for Industrial
Research# Oslo, Norway, December, 1969.

10. Hildebrand, F.B., "Advanced Calculus for Applications",
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1962.

11. Higdon, A., Ohlsen, E.H., Stiles, W.B., Weese, J.A.,
"Mechanics of Materials", Second Edition, John
Wiley and Sons, Inc., New York, July, 1968.

12. Thomas, G.B., "Calculus and Analytic Geometry", Fourth-
Edition, Addison-Wesley Publishing Co., Reading,
Massachusetts, June, 1972.

13. Yeung, R.W., Class Notes, MIT Ocean Engineering Depart-
ment Course 13.50, Spring, 1977.

14. Carnahan, B., Wilkes, J.E., "Digital Computing and
Numerical Methods", John Wiley and Sons, Inc.,
New York, 1973.

15. S~ding, H., "Numerical Ship Lofting and Hull Form
Design", Unpublished paper, Circa 1962.

16. Kyrkos, B., "The Fairing and Mathematical Representation
of the Surface of a Ship Using a Small Computer",
(Greek) Translations from National Technical
University of Athens, Diploma Thesis, 1976.

17. Corin, T., "Recent Developments in Ship Lines Fairing
at the David Taylor Model Basin", DTMB Report,
Applied Mathematics Laboratory.

18. Kerwin, J., "Fitting Curves with Infinite Slopes at
x-0", Unpublished paper used for Course 13.50,
Spring, 1977.

104



19. Viega, J.P.C., "Hydrostatic Considerations in the
Design of Ships with Unusual Shapes", Massachusetts
Institute of Technology, Department of Ocean
Engineering, Thesis, January, 1975.

20. Baumeister, T. and Marks, L.S., "Standard Handbook
for Mechanical Engineers", Seventh Edition,
McGraw-Hill Book Company, New York, 1967.

21. Silverstein, S., Telephone Conversation, Shipboard
Sonar Group, Naval Sea Systems Command, Washington,
D.C., Circa, November, 1977.

105



APPENDIX A

Calculation of coefficient c and centroid of the sliver of

added area. Referring to figure 2.4.

Recall: 6x = cx(1-x)

1 1
- f 6x dy = c f x(l-x)dy

0 0
1 12

= c { f x dy - x2 dyl = c[0-20x]
0 0

c - a

-2; 0 (1-23F)

solving for centroid, h

1x
60.h = 6 x(x+L)dy0

1 11 2
f x6x dy + I 6x dy
0 0

substituting for ax

60.h " f (x2 -x3 )dy+2 -
x 2  f (x 2 -2x3 +x4 )dy

* (1-23F) 0 2 (1-2i) 0

h a 2xF- 3k 2 + - 3k 2 + 2r 3  (A.2)
1 - 2i (1 - 2()
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For 6

h -2x 3k2  (A.3)
1-2x

where:1

2 f 1 1 y r3  L fxdy
IT 0x 40 0
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APPENDIX B

Figure So1

Referring to figure B.1 above,*all longitudinal dimensions

are measured with respect to the point of maximum sectional

area. Assume:

8x =cx(l-x)

x(l-x)

For the new hull form

Ot L(0+ 8) + L (0 + SO (B.1)
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'- L ( e*ie~ + 6*ehe - Lr(*rXr + 60rhr) (B.2)
L

Also for the original hull form

#t S L{Lefe + Lr~r (B.3)

We now have to apply equations (B.1) and (B.2) to obtain
values of 6 and 6 r in terms of the known quantities

e r

and *t" These quantities representing the desired values LCB

and C for the derived form.
p

Solving equation (B.1) for 6d

e

Y= Lee + Le6*e + Lr(*r + Sor )

6 e L{ - Leoe - Lr (r + 6 r ) }  (B.4)
Le

Substituting equation (8.4) into equation (B.2) and solving for

r

tI Le e e +oehe) r Lorxr +4rhr
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expanding the right hand side, R.H.S.

2- 2 2- 2L.H.S. -Le* xe + L e* ei h Li* xr - L26r hr

rearranging terms

L2-60h r-L e64 h e L 2~ex i2-x PL

substituting in L.H.S.

2 6*h eL 2h L-{L,'I L Lr ( r~dfr)~ R. H. S.

22
Lr 6 rhr -Le he Lo + Lehee + Lr Leh efr + LrLeh e 6 0r-

6r (L 2hr+LrL he) + L (Lehe~ + * h Lo')

1~ {L 2 0 ; +L 2 IL 2 *'-L h (r=L 2h+LrLh e ee rrxrz e e e+
r r ree

Lr~r L* ) I (B. 5)

Equation (B.5) may be substituted back into equation (B.4)

to obtain a value for S*
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However, if the simplified form for h is not used

h - f(64rfd e )

Derivation of 6*e from equation (1)e

6r L{ - Lef e - Le6*e - Lr*r }  (B.6)
r Lr t ee ee r

substituting into equation (B.2) and rearranging

PL2 L2 + 2 --. S

S'L2* - LeXe + LrrXr = R.H.S.

2
= Lh e6 e - Lrhr{L'-Le e-Le6$e-Lr r }

- 60e {L2h+LrLeh }-Lrhr (L-Lee-Lrr}

e 2 L r r r ' 2  'L e (Le~e
e  Lehe+LrLe hr

Lrr-L# )} (B.7)

The form of this equation is merely the transposition of

subscripts by re-.r of equation (B.5) for fr"
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APPENDIX C

4 -4

Figure C.1 - Section Modification

Definitions:

a - area of section

b - beam of section

d - draft of section

Subscripts:

p - parent hull form

d - derived hull form
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x - a maximum value, e.g., bd is the maximum value

of the beam in the derived hull form

Superscript:

bar, (-): refers to the sections in the parent and

derived form which interact to create the

derived section of maximum area.

star, (*: refers to the sections which are used to

create the section of maximum beam in the

derived form.

Further define the following ratios:

a b d

Ad Bd DdCL= , . -=- 0 1& =
A B '

p p p

also

A
~B°D

It is by selecting a section in the parent, whose

value of R is equal to that of the derived section being

sought, that the new.sections are created. -It should also

be evident by referring to figure C.1, that the area of

the derived section will be as follows:
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b dx d d
a D ap d 

px px

It remains to be shown that in some cases the resulting area

ratio is not always what is desired.

The following expression will also be useful.

a a bdx dg___ x
adx pB 97 d x

dx p px px

For any derived section, the area ratio obtained is:

ad bdx ddx 1___._1_

a x p b px IX b(Cxdl)

px px

a

a
p

However, the area ratio desired is:

a

aDx d d (C.2)
Rp d d d- -

ip p dx dx px

px px

Therefore, the ratio of Ad desired to Ad obtained is:

aa

a a a- -
.0 Aa px B pD

p
p~d~d (C.3)
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Define: S = 1

It can be readily seen that, if the sectional area

curve and the design waterline have their maximum values at

the same longitudinal position, the value of S will be 1,

i.e., S - 1. Hence, the area curve obtained will be equal

to that desired.

If this is not the case, the designer has one option

which will permit him to create a ship with the desired values

of C , LCB, Cw and LCF.

*The designer must select a common longitudinal

position about which to alter both curves.

This will permit him to freeze either the

point of maximum section of the point of

maximum beam. Not both.

-The only other alternative is to carry out

the original procedure and accept slightly

different values of Cp and Cw. LCB and LCF

will be as desired. The factor by which Cw

will differ is:

R*D*
W -2d (C.5)

Ad
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APPENDIX D, [15]

YY

YM*1

Figure D.1 - Rotating
Spline Routine

For n intervals bounded by n+l points the curve

between points Pi and Pi+l may be computed as follows:

1. Compute initially:

rc tan [(y2-yl)/(x2-x1)], if x I  x 2

a. l=

r/2, if x1 = x2

b. p, g,
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2. Compute n1 times for i = 1(1)n

a. i {x~ - Xi) 2 + -Y~ i 21/

b.

g gj+arc tan( (Y~iYi(xi-xii) -(Y-Y i(Xi+fx I

gi gi-1 ~~~~~(Xi+i--X 1 ) (x i-xi)+ Yl j y-:,i)

only if i > 1

-1/2, if i - 1

c. k i - 1 -F if i> 1

d. r 3k.i (p.-g.)

p±-Ir (1+1/k i), if ki 0

C. i+i

3. Compute once:

a.q l'0

b. d n+i P n+l +
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4. Compute n times for i 1(-1)n

a. qi ri + qi+ ki

b. di = P +q

c. ai = tan(di-g i)

d. bi = tan(di+1 -g i )

The above procedure applies to the case where the ends

are pinned, i.e., d2y/dx2 = 0 at x = x, and x Xn+ 1 . If,

however, it is desired to have the beginning slope equal to t1

the following changes must be made:

eqn. l.b. p1 = ti

2.c. k = 0

If it is desired to specify the end slope as tn+l:

eqn. 3.a. qn+l tn+l - Pn+l
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'II

To interpolate any point on the curve the following

parametric equations are used:

Sx =x i+ (xi+l-Xi}t- (yi+l-Yi) t(l-t) [ai (l-t) -bit]

y yi+ (Yi+-Yi) t- (xi+l-x i ) t (l-t) [ai (l-t) -bit

for 0 - t - t

Section 3.2.4 describes the actual interpolation procedure.
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APPENDIX E

The following procedure was taken from reference [201

and is that used to obtain the roots of the parametric

equations for x and y shown in Appendix D.

Given the general form of the cubic polynomial:

x +ax + bx + c = 0 (E.1)

this may be reduced to the following by dividing by

x = x -a/3:

3x= Ax 1 + B (E.2)

where

2
A =3(a/3) - b

3
B = -2(a/3) + b(a/3) - c (E.3)

Defining

p- A/3 and q - B/2 (E.4)
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The roots of equation (3.2) are as follows:

Case I: q 2 p3 > 0, there is one real root

i q + ! P3 1/3 +{ _ 1/3
x 1  {q + I 1 '+ {q- 1/3(ES

There are also two complex conjugate roots.

Case II: q2 _ p3 = 0, there are three real roots of which

two are repeated, i.e., only two roots are unique.

X = 2(q)1/3; x2  --(q) 1/3; x 3 = x 2  (E.6)

Case III: q2 _ 3< 0, there are three real and distinct

roots.

x= 2/p cos (U/3)

x 2 = 2VP- cos (U/3 + 2v/3) (E.7)

x = 2rp cos (u/3 + 4w/3)

where

cos U = q/p/pv

0 - U (E.8)
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NOTE: These are roots of equation (E.2). To obtain the

roots of equation (E.1) -p/3 must be added to the above

solutions.
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APPENDIX F

Figures F.1 and F.2 are conceptual flowcharts of

the fairing and the splinning and interpolation procedures

respectively. In the program listing that follows there is

a short MAIN segment that requests the input data for a

specific line and generates twenty-one (including end points)

interpolated data points. While this program segment might

prove of some value, it was designed primarily to test the

various subroutines.

NOTE: The program as listed requires the use of the LEQTIF

Subroutine from the IMSL library. This subroutine is used

in STRIP1 and STRIP2 to solve a 4x4 and a 3x3 system of

simultaneous linear equations. For these SMAT is the

coefficient matrix and T is the resultant column vector.

If this library is not available any equivalent procedure

could be substituted.

NOTE: Due to time constraints at the time of publication,

the program, as listed, will not accommodate curves with

point types three or five. It will, however, handle curves

without straight line segments and infinite slopes at end

points.
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CRV matrixF I&
Loads points on continuous
segment into X. Y and YORIGI

"1FARCRV" NO NOTE: "FARCRV"
Rotates axis to place X, calls "SPLINE" to
Y and YORIG-XPRIM, YPRIM calculate the

and YOPRIM slope at point 3.

FFARLIN
Loads 4 oin 5 pointsinto X1# Y1 and YO

Are they

anst points

IFTT"NO TA "

Transforms abscissaand calls STRIPI, 2 or 3
to faii last 3 points

?I

Points Are int-
erior points

and cTRIPI is called

Figure F. -- Flowchart of Fairing

Subroutines
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CRV Matrix

"PRESPL"
Loads points on a continuous
segment into X, Y and YORIG

Places A, B and D into the
CRV matrix

"SPLINE"
Executes the rotating spline

algo ithm, calculating A, B and D

X, Y,

A, Band D

"IN TERP"1

Determines the interval
in which a specified

abcissa lies

"CALCY"
Calculates the desired

ordinate and slope at the
specified abscissa based

on the value(s) of
the parametric variable T

"CALCT"
Calculates the real

root(s) of the
parametric variable T

Figure F.2 - Flowchart of Splinning
and Interpolation Subroutines
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APPENDIX G

The following is an example of a typical bow section

for a ship with a bulbous bow mounted sonar dome. Although

the section is for a hypothetical ship it illustrates the

capability of the computer program to fair, spline and inter-

polate a curve having an infinite slope at an end point.

In the CRV matrix shown, the items written in block

numbers are input values while those in italics are values

calculated by the program. The elements left blank were not

used in this example. The values of tolerence, accuracy and

limit are:

TOL - 1.00

ACC - 0.05

LIMIT 10
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CRV MATRIX

1 2 3 4 5 6 7

1 0.0 0.0 0.000 0.0 0.333 -0.480 1.510

2 2.0 7.0 6.000 0.0 0.530 -0.675 0.802

3 6.0 8.0 7.301 0.0 0.394 -0.122 -0.279

4 9.0 4.0 4.999 0.0 -0.156 0.160 -0.776

5 12.0 2.0 2.805 0.0 -0.242 0.241 -0.473

6 17.0 2.0 1.609 0.0 -0.218 0.149 0.002

7 23.0 3.0 2.934 0.0 -0.041 0.009 0.366

8 28.0 5.0 5.086 0.0 0.006 -0.003 0.416

9 30.0 6.0 5.954 0.0 0.401

31 1.0 9.0 0.0 1.1

32 2.0 4.1 0.0
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Th-i resulting interpolated values for increments of AX = (30-0)/

20 are as follows:

X Y DY/DX

0.0 0.0000

1.5 5.4206 1.3048

3.0 6.8443 0.6555

4.5 7.4269 0.1361

6.0 7.3018 -0.2867

7.5 6.4713 -0.8319

9.0 4.9998 -0.9816

10.5 3.7259 -0.7238

12.0 2.8047 -0.5114

13.5 2.1714 -0.3371

15.0 1.7846 -0.1815

16.5 1.6191 -0.0415

18.0 1.6542 0.0867

19.5 1.8721 0.2010
21.0 2.2473 0.2956

22.5 2.7465 0.3656

24.0 3.3316 0.4116

25.5 3.9724 0.4396

27.0 4.6403 0.4476

28.5 5.3051 0.4368

30.0 5.9543 0.4308

Figure G.1 shows the curve generated as a result of fairing

the given data points.
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